

Development and Validation of a Bench-Scale Flash Fire Materials Tester

European Conference on Protective Clothing 10-12 May 2021

Rick Burke President Thermetrics Rickb@thermetrics.com

Josh Ingram

Development Engineer PBI Performance Products joshua.ingram@pbiproducts.com

Overview

- Do we really need another test device?
- Development Overview
- Device Usage
- System Validation
- Use and Standardization

Material Tests – Flat Samples ISO 17492 (HTI), ASTM F2700 (HTP/TPP), EN 469

hermetrics

Flash Fire Manikin – Full Garments ISO 13506-1, ASTM F1930

ECPC 9 – 12 May 2021

Slide 4

Missing dimension in flame exposure testing

1-D

3-D

MANIKIN

N° of sensors	1		>120
Specimen Size	6"x6" (15 x 15 cm)	Gap	Full garment
Geometry	Flat Samples		Per garment pattern
Variables	Material, air gap		Material, garment fit, garment construction
Exposure	84 kW/m ²		84 kW/m ²

Flash Fire Cylinder Fills the Gap

TPP

1-D

2-D

MANIKIN

N° of sensors	1	15	>120
Specimen Size	6"x6" (15 x 15 cm)	13.25" x 11.25" (33.6 cm x 28 cm)	Full garment
Geometry	Flat Samples	Cylindrical Samples	Per garment pattern
Variables	Material, air gap	Material, air gap, compression	Material, garment fit, garment construction
Exposure	84 kW/m ²	84 kW/m ²	84 kW/m ²

Prototype Development – Key Constraints

- Compact for use in lab environment
- Familiar technology elements (transfer from FF manikin)
- Increased flame uniformity (vs FF manikin)
- Integrated and robust safety precautions
- Easy sample prep and install
- Cylinder size in-between arm and leg circumference

Original FFC Prototype

- Integrated System
- 9 Burners in 3x3 configuration
- 15x Copper disc calorimeters
- Data collection and analysis software
- Computations of sensor heat flux, energy, predicted burn

Feedback Received

- Compact size is a plus desire to fit in lab hood
- Prioritize operator and facility safety
- Flame profile consistency and uniformity is important
- Consider method to monitor gas flowrate during use for interlab tuning
- Ensure repeatable air gap and sample positioning
- What are appropriate device data outputs for material testing
- Can this system be used for a hand or head?

orrics

System Redesign – Burners

- Key Variables:
 - Number and position of burner heads
 - Flame profile adjustability
 - Fuel Supply (pressure/torch orifice)

- Measures (n=306 tests)
 - Mean device Incident Heat Flux (nominal 84 kW/m2)
 - Spatial variation of sensors
 - Temporal variation (within test)
 - Test repeatability

3x3 Torches

3x3 with "Hat"

4x3 & 4x2 Torches

Refining the Flame Profile

Full Device

Individual Sensors

the second secon

Key Conclusions

- 1. We could reliably achieve 84 kW/m² for all configurations
- 2. Sensor spatial bias was very consistent on multiple tests. Hot and cold spots could be "moved" by tuning and they would remain on replicate tests
- 3. Adding the "hat" increased average heat flux by 3 kW/m² and increased SD by 2 kW/m²
- 4. 4x burner risers was easier to tune and better spatial uniformity than 3x torch risers
- 4x2 configuration resulted in lower overall flame height vs 4x3

Ultimately, 4x2 configuration with no hat was selected for comparable or better performance at lower complexity

Burner Detail

hermetrics

- Adjustable torch risers
- Individually aim-able torch nozzles
- Single adjustable main gas regulator
- Flow control valve on each nozzle

Typical system tuning takes ~ 1 day during initial setup

Sample Holder with Air Gap

System Design – User and Device Safety

- Extensive fault and safety analysis as part of design iteration
- Safety Features
 - Remote electronics/fuel system
 - Rated component selection
 - Dedicated process/safety control PLC
 - Pilot flame detection
 - Overtemperature monitoring
 - External e-stop interface

What is Energy Ratio?

- Burn injury prediction not a great fit for FFC
 - Not a permissible result for ISO standardization
 - 15 sensors: resolution of % area computation is 6.67%
 - If the heat flux is uniform and the sample is uniform, all sensors would achieve the same burn level simultaneously
- Energy Ratio
 - Similar to Energy Transmission Factor from ISO 13506-1
 - To the question: How much of the incident energy gets through the test specimen?
- Computation
 - Energy Ratio = Transferred Energy/Incident Energy * Exposure duration factor
 - Exposure duration factor = scale to adjust for difference in nude/sample exposure time

Flash Fire Cylinder/Hand System

Controls, Safety Systems and Data Logging

hermetrics

Cylinder, Sensors, and Fuel Control

ECPC 9 – 12 May 2021

Slide 20

ECPC 9 – 12 May 2021

Making a Sample

Fitting Samples

System Validation

Nude Exposure

- Average Heat Flux
- Spatial SD

Single Layer Samples

- Comparison of **Energy Ration** and % Burn Area
- Sample Differentiation
- Repeatability SD/CV

Composite Samples

- Comparison of **Energy Ration** and % Burn Area
- Repeatability SD/CV

ECPC 9 – 12 May 2021

Test Validation- Calibration Consistency

- 193 nude exposures
 - 170: 4 second exposures
 - 23: 3 second exposures
- Average Heat flux: 83.82 kW/m2
 - Only 4 second exposures: 83.81 kW/m2
 - Only 3 second exposures: 83.88 kW/m2
 - ASTM F1930 Requirement: 84 kW/m2 ± 5% (4.2 kW/m2)
- Average Standard Deviation: 8.29 kW/m2
 - Only 4 second exposures: 8.54 kW/m2
 - Only 3 second exposures: 6.45 kW/m2
 - ASTM F1930 Requirement: 21 kW/m2

Test Validation- Single Layer Fabrics

- Each material laundered 1x prior to testing
- 3 second exposures
- n = 30

Test Validation- 3 Layer Turnout Composite

- Laundered 1x prior to testing
- 10 second exposures
- n = 30

	% 2 nd and 3 rd degree body burn	Transferred Energy (kJ)	Energy Ratio
Average	15.56%	15.636	0.182
Standard Deviation	9.64	0.643	0.007
CV <	62%	4.1%	4.1%

Test Validation- Findings

- The test produces repeatable, uniform flame exposures
 - Minimal difference between exposure times
- Test results are consistent for multiple materials and multiple layers
 - Energy Ratio is the preferred metric
- The test differentiates between different materials

Use and Standardization

- 5 Client Systems delivered
 - Round robin being planned
- ASTM work item WK70964
 - Under second ballot
- NFPA 2112

hetrics

- Accepted in 1st draft of next edition
- To be introduced to more standards as they enter revision cycles

Thank You for your attention

Rick Burke President Thermetrics Rickb@thermetrics.com

Josh Ingram

Development Engineer PBI Performance Products joshua.ingram@pbiproducts.com

